If it's not what You are looking for type in the equation solver your own equation and let us solve it.
128-6x^2=0
a = -6; b = 0; c = +128;
Δ = b2-4ac
Δ = 02-4·(-6)·128
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{3}}{2*-6}=\frac{0-32\sqrt{3}}{-12} =-\frac{32\sqrt{3}}{-12} =-\frac{8\sqrt{3}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{3}}{2*-6}=\frac{0+32\sqrt{3}}{-12} =\frac{32\sqrt{3}}{-12} =\frac{8\sqrt{3}}{-3} $
| -5x+9+2x=3(x-3) | | 10-x-6=10 | | 36w^2-64=0 | | 1/3(12z)=6z | | 17/3=u/5 | | 50=x+50 | | 7=2v-11 | | y=1-(5)+3 | | 4(x-5)+5=25 | | -39=u/5 | | d/4+3=1 | | -w/8=37 | | 2+3x+6x=38 | | 2+3x6x=38 | | 7k/8-¾-5k/16=3/8 | | 7k/8-¾-5k/16=⅜ | | 7/12=v/9 | | 7x+9+7x=177 | | 3x^2-33x-38=0 | | u/9=11/8 | | 3^(x+6)=72 | | x-(.05x)=25000 | | 180-5x+5x=180 | | 2x-6x-4=-2(x-2) | | 2(x-4)=2x+3 | | 6x−3=32x | | 2x-6x-4=-2 | | 4m+6=4 | | 4(x+1)=9(x-2)+7 | | 2(-5+7x)=32 | | 2n-12=46 | | k/5-5=6 |